특징 추출1 33번째 이야기 - 합성곱 신경망, CNN, 합성곱층, Convolution layer ● 오랜만에 뵙습니다. 합성곱 신경망(CNN)의 구조에 대해 간단히 살펴보도록 하겠습니다. ● 일반적인 신경망의 학습은 입력층에서 은닉층을 거쳐갈수록 점점 복잡한 특징들을 학습해나갑니다. ● 기본 특징(모서리나 직선 등)에서부터 조금 더 복잡한 패턴(원, 정사각형) 그리고 더 복잡한 추상화된 패턴(고양이 수염, 얼굴의 부분, 자전거 바퀴 등)에 이르기까지 말이죠. ● 합성곱 신경망 또한 이러한 일반적인 신경망의 학습과 별반 다르지 않게 진행됩니다. 오차를 계산하여 오차만큼 역전 파한 후, 가중치를 조정해가는 학습의 과정도 물론 동일합니다. ● 단, 하나! 일반 신경망에서는 특징의 학습을 전 결합층(Fully-Connected layer = MLP)에서 했다면, 합성곱 신경망에서는 합성곱층(Convolut.. 2022. 11. 21. 이전 1 다음